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Abstract-This paper reports an analytical-numerical study on hydrodynamic dispersion in natural con- 
vection heat and mass transfer near vertical surfaces embedded in porous media. The study considers the 
convective flows promoted by the density variation due to the combination of temperature and con- 
centration gradients. Scale analysis is used to determine predominant parameters from a general descriptive 
form for the diffusive terms in the governing equations. Four classes of flow are possible according to the 
relative magnitude of the dispersion coefficients. Order of magnitude reasoning is used to obtain the 
similarity variables and dimensionless parameters, in the search for similarity solutions. An enhanced form 
of the Runge-Kutta algorithm is applied to solve the system of coupled similarity equations. Results are 
presented for several cases in each class of flow, covering an extensive range of the governing parameters. 

INTRODUCTION 

THE LITERATURE on heat and mass transport in porous 
media points out that diffusion is proven from two 
basic source mechanisms with distinct phenom- 
enology [I]. The first mechanism is that of molecular 
diffusion, present in almost every transport process. 
The drive in this mechanism is associated with the 
spatial gradients of the thermophysical properties. 
Pure heat conduction and pure mass diffusion are two 
classical examples of this nature. Molecular diffusion 
occurs in stagnant media as well as in flowing, but is 
the only mechanism to actuate in perfectly stagnant 
systems. Hydrodynamic dispersion is the second 
known source of diffusion. It is found in con- 
figurations of fluid moving across porous media 
systems. The dispersion concept helps to explain the 
differences often observed between transport par- 
ameters measured along and across the principal 
direction of fluid flow in simple geometries. Among 
the first fundamental work on this subject, it is worth 
mentioning the papers by Taylor [2] and Saffman 
[3]. The development of dispersion theory has been 
mainly related to miscible displacement and solute 
spreading in porous media. These areas are-of major 
interest to secondary and tertiary oil recovery oper- 
ations and to pollution control in water resources 
engineering. 

Natural convection through porous media has 
received considerable attention in the last decades, 
partially due to the increasing demand of our society 
for solutions to environmental problems. The bulk of 
the existing work on this topic has been devoted to 
natural convection promoted by diffusion of a single 
property, temperature in most cases. Natural con- 

vection driven by the combined effects of two diffusive 
components is a subject of recent interest. An oppor- 
tune review [4] on the topic points out that most 
studies have focused on the stability analysis of flows 
near critical conditions, therefore these are limited to 
the slow flow regimes that take place at the onset of the 
convective motion. Among the few studies concerned 
with the fully developed flow regimes, Bejan and 
Khairy [5] and more recently Lai and Kulacki [6], 
have addressed the problem of convection driven by 
double-diffusive components along a vertical plate. 
The present work considers the flat plate basic 
geometry to disclose the role played by the hydro- 
dynamic dispersion in natural convection flows. 

Hydrodynamic dispersion in porous media is 
modeled in the literature [I] as a tensorial quantity, 
with its components being either parallel or orthog- 
onal to the main flow direction. In a comprehensive 
review of existing experimental work, Johnston and 
Perkins [7] present correlations for the longitudinal 
and transversal dispersion coefficients for mass trans- 
port. Longitudinal dispersion values are consistently 
higher than their transversal counterparts. 

More recently, Hong and Tien [8] have considered 
the problem of natural convection in the presence of 
thermal dispersion along a vertical plate. The trans- 
versal component of heat dispersion was modeled as a 
velocity dependent term which is added to the thermal 
conductivity term in the energy equation. From a 
perturbation analysis carried on a Brinkman flow 
model, the authors conclude that dispersion tends 
to increase heat transfer while boundary and inertia 
effects tends to act contrarily. 

The objective of the present work is to assess the 
effects of the hydrodynamic dispersion on the heat 
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NOMENCLATURE 

c similarity concentration profile V velocity 
C concentration .x, Y Cartesian coordinates. 
AC concentration difference across the 

boundary layer Greek symbols 
d pore average diameter thermal diffusivity 
D mass diffusivity i thermal expansion coefficient 

p 
dispersivity ratio PC concentration expansion coefficient 
similarity streamfunction Y mass dispersivity, E& 

9 gravitational acceleration 6 boundary layer thickness 
H height of porous layer El longitudinal dispersion coefficient 
II unity tensor E2 transversal dispersion coefficient 
K permeability ‘I similarity variable 
Le Lewis number 0 similarity temperature profile 
N buoyancy ratio Y kinematic viscosity 
NU Nusselt number ; thermal dispersivity, EITd 
Pe Peclet number P density 
RU Rayleigh number * streamfunction. 
Ra, dimensionless number, KgPATy/av 
Rat dimensionless number, Kg/YAT</Dv Subscripts and superscripts 
S/l Sherwood number ( )c solutal properties or parameters 
T temperature ( IT thermal properties or parameters 
AT temperature difference across the ( I* dimensionless variables 

boundary layer LJ tensor notation 
u, 1’ velocity components ( ) vector notation. 

and mass transfer that occurs in natural convection 
flows. The focus is on the boundary layer regime pro- 
moted by the combined events of concentration and 
temperature gradients near a vertical wall. The study 
departs from the complete form of the governing 
equations to develop the reduced form via scale 
reasoning. Scale analysis is also used to sort out the 
possible cases according to the most important 
relations between the physical parameters involved. 
The differential equations for the various cases are 
then treated via similarity analysis. The numerical 
solution to each resulting coupled system of ordinary 
differential equations is obtained by an enhanced form 
of the Runge-Kutta algorithm. An extensive sequence 
of results is presented for a wide range of the main 
governing non-dimensional numbers. 

In the above equations, the Boussinesq-incom- 
pressible model has been implicitly assumed as valid 
to account for the density variations in the buoyancy 
term. 

Particular attention is given in this work to the 
transport of energy and the chemical constituent. The 
dispersion mechanism is considered in the diffusion 
processes of both thermal energy and chemical 
species. Assuming local thermal equilibrium as well 
as the absence of chemical reaction, the conservation 
equations for energy and constituent are 

MATHEMATICAL FORMULATION 

The natural convection heat and mass transfer is 
considered here in the steady state regime along a 
flat vertical surface. The surface is embedded in a 
homogeneous and isotropic porous medium. The 
complete governing equations for the conservation 
of mass and momentum in two-dimensional porous 
systems are [4] 

su sv 
-+-=o 
6x sy 

In order to maintain the original form assumed to 
describe diffusion and dispersion in the model, the 
right-hand sides of equations (3) and (4) were kept in 
the general vectorial notation. The coefficients r and 
e representing the thermal and the mass overall 
diffusivity, respectively, have embodied in them the 
contributions of both molecular diffusion and hydro- 
dynamic dispersion. In a broad view, these quantities 
are tensors and can be described in a general form as 
[91 



Dispersion in natural convection I359 

(:;D) = (a;D)[l+(E~~;;E~c)l~*I?II 

+ ((~7~ ;E:~)-(EZ:-;E~~))~*~*] (5) 

where (CL, 0) is the diffusivity tensor, E, and a2 rep- 
resent the longitudinal and the transversal dispersion 
coefficients, respectively. Subscript T refers to thermal 
dispersion while subscript C indicates chemical dis- 
persion. Experimental observations [9] have indicated 
the dispersion coefficients as practically constant at 
low Peclet number regimes. In the high Peclet number 
range these parameters vary inversely with Peclet, or 
in other words, inversely with the fluid velocity. After 
detailing the terms in the matricial notation of equa- 
tion (5). and returning all variables to the original 
dimensional form, the energy conservation equation 
can be written as 

To recast the above equations into the dimensional 
form, the appropriate set of non-dimensional vari- 
ables was used as defined in ref. [9]. The many terms 
appearing on the right-hand side of equation (6) were 
derived via pure algebraic manipulation. The con- 
tribution of each term to the overall transfer may 
vary and will certainly be different for different flow 
configurations. The terms can be sorted out by con- 
tribution through order of magnitude analysis, after 
the basic scales that characterize the flow in a certain 
geometry have been identified. In what follows, we 
outline the scaling arguments concerning the bound- 
ary layer regime of the natural convection flow in the 
vicinity of a vertical boundary. We will refer to flow 
regimes of high Peclet numbers. In these regimes the 
dispersion coefficients are known to vary inversely 
with the velocity modulus, or with the Peclet number 
as mentioned earlier. Similar analysis can be carried 
out for regimes in the low Peclet range. 

According to the boundary layer theory, the fluid 
flow taking place at the near boundary region presents 
scales such as 

Before proceeding with the analysis, it is convenient 
to modify the dispersion coefficients to explicitly 
account for their velocity dependence 

@IT ; Err) 
(&& ; &fT) = v 

IV*1 

or 

(E :T ; ET&:) = (Em ; E?T)S( 
vd (9) 

Equation (9) expresses the dispersion coefficients as 
functions of the Peclet number, and the terms intro- 
duced in the right-hand side coincide with the defi- 
nition for dispersion coefficients adopted by Johnston 
and Perkins [7]. As observed by these authors, the 
longitudinal coefficient E, is higher than the trans- 
versal coefficient s2 in most practical casts. 

After substituting equation (9) into the right-hand 
side of equation (6), the scales to the latter terms are 

1 

[( 

u’ AT AT 
s 

r;cZTdv;EITd- p;F.,+td- 
> 1’ d H 1 

(10) 
Comparison between the orders of magnitude 

expressed in equation (10) can be straightforward if 
we invoke the geometric relation of the boundary 
layer in equation (7) and consider that although 
E,~ > E*-,., scales of H and 6 are such that E?,-H is still 
greater than ~,~b. Screening the orders sequentially, 
all the terms are ruled out by the first two terms in 
expression (IO). From all the possibilities introduced 
by the dispersion components in the porous medium, 
only the cross product of the transversal coefficient 
and the longitudinal velocity remains as the relevant 
dispersive agent to diffuse energy. The energy equa- 
tion can be then simplified to 

By the same reasoning used to obtain equation (I I), 
the constituent conservation equation is reduced to 

6C 6C 6 
uG +“- = s,y 

SY 
(D+&,d”)g 1 (12) 

Both parameters (E?~, clC ) and dare essentially charac- 
teristic properties of the saturated porous medium. 
Relatively few data are available on heat dispersion, 
but estimates for the product hTd from published 
data [IO] span between IO-’ and IO-’ m, for sand- 
stone-water media. More research has been done on 
mass dispersion, and known values of &d are typ- 
ically one order of magnitude lower. It should be 
stressed though, that the lower value of the constituent 
dispersion coefficient does not imply a lesser influence 
on the combined diffusive effect. Indeed, for the com- 
mon water-glucose or water-chlorine solutions, heat 
diffusivity is two orders of magnitude greater than 
mass diffusivity. In these cases, EZCd has a much 
greater impact on diffusion of the chemical compon- 
ents than cZTd has over heat diffusion. When consider- 
ing double-diffusion phenomena, if Le > 1, as in the 
cases mentioned, the dispersive contribution of EITdv 
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can be neglected with respect to the effects of a: up to simple particular case of the double-diffusive convection 
a higher range of fluid velocities. with no heat dispersion and no accounting for the trans- 

In the next section, the variety of regimes possible port of chemical species. 
under different combinations of diffusion parameters The mass transfer scales can be found from the 
is sorted out via scale analysis. For notation constituent conservation equation, now reading 
simplicity, the products EZTd and E2Cd will be referred 
to simply as < and y, respectively. 

SCALE ANALYSIS 

Consider the two-dimensional region of a saturated 
porous medium near a vertical flat boundary. Con- 
servation of mass and momentum are given by equa- 
tions (I) and (2). The governing equations for energy 
and constituent, after being reduced accordingly to 
the boundary layer theory, are 

The scale analysis in this case can be carried out in 
different ways. We chose to start by examining the 
scales that are embodied in the energy and constituent 
equations. This choice is suggested by the primary 
interest, which is to study the role played by the dis- 
persion coefficients. Comparing the molecular dif- 
fusion and the dispersion terms in equations (13) and 
(l4), four different classes of problems are anticipated 
from the combination of possibilities 

Each of these classes will branch out new groups, 
when the continuity and momentum scale balances 
are brought into the analysis. The driving force in the 
momentum equation is due either to the temperature 
gradient or to the concentration gradient. The driving 
mechanism is itself used to distinguish the two flow 
regimes, the first called heat-transfer-driven and the 
last known as mass-transfer-driven. One final sub- 
division is proportioned by the comparison between 
the heat and mass diffusion properties of the flow. 

Consider the first class of flow, when thermal 
diffusion is predominant and mass dispersion super- 
sedes mass diffusion. The energy equation will read 

6T 6T a2T 
U~+v6y=a6X2 (15) 

and the scales of 6r, v and Nu depend on the relative 
magnitude of the terms PAT and &AC. In situations 
of heat-transfer-driven flows (BAT >> /3cAC), Nu 
varies as Ra’12. This result is the same obtained for 
pure heat transfer natural convection, which is a 

(16) 

Integrating equation (16) across the boundary layer 
results in 

d .’ 

-I dy o 

In scaling terms 

Here the analysis branches off again, now into sub- 
classes where 6, >> &(a >> yv) or 6, << 6, (c( << yv). 
Proceeding with the CL >> yv case from equation (I 8) 

SC - (yH)“2 

or 

(19) 

(20) 

with Sh corresponding to the dimensionless mass 
transfer rate. 

The scales for classes 2, 3 and 4 can be derived in 
an analogous procedure. Table 1 summarizes all the 
results relative to the first class, including the branch- 
ings mentioned but not detailed in the analysis. 
Table 1 also shows the validity criteria for each class, 
expressed in order of magnitude terms. 

The results concerning the second class can be ob- 
tained by repeating the reasoning presented during the 
analysis of the first case, observing that all the basic 
equations remain unaltered except for the constituent 
conservation equation, which now is expressed by 

SC SC 2 
u--fv-~D~~ 

6x sy 6x2 . (21) 

Along with the continuity, momentum and energy 
equations, equation (21) describes the class of prob- 
lem where hydrodynamic dispersion is neglected in 
both energy and mass transport. This case has been 
treated in the literature [5] and the scales involved are 
known. 

The same scheme of analysis could be used to reveal 
the scaling relations that are valid in the other two 
classes (3 and 4). An alternative way is to correlate 
the scales of the different cases by observing the simi- 
larities that exist across the classes. By writing the 
governing equations side by side for two classes at 
a time, the symmetry rules between the systems of 
equations become apparent. These rules were used to 
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Table 1. Scales for dispersion only in transport of chemical species 

Driving 
mechanism NU Sh Criteria 

Y 
0 

-I 
Roll’ z 

Ra- 112 
Heat transfer 

Ra, >> 1 

INI << 1 
fjRa 

0 

- I,2 
Ra’12 Y 

z 
Ru, << 1 

Mass transfer 
INI >> I 

RRajNl 

aRaIN RaINI $ 
0 

l/Z 
0 
u - 112 
H 

Y 
- 112 

0 z 

Ra, INI >> I 

Ra; INI << 1 

obtain the scaling laws displayed in Table 2, for the 
flows of class 4. 

SIMILARITY SOLUTION 

The scale analysis presented in the preceding section 
is very useful to indicate possible self-similar relations 
in the differential equations. And, if it applies, to 
indicate which are the most proper-scaling wise- 
similarity transformations. Starting with the case 
where hydrodynamic dispersion is predominant in 
diffusing the chemical constituent, while the heat 
diffusion is primarily by conduction, the adequate 
variable transformation is 

VI.2 = -?-- yRa,: “I 

fl.2 = &. (22) 

The ordinary equations resulting from the substi- 
tution of equation (22) into equations (l), (2), (15) 
and (16) are 

f’; = -&-NC’ 

8” = :j-,e 

c”= -E[ffi+RaY$]. (23) 

The variables defined in equation (22) can also be 
used to reduce the governing equations of class 2 to 
the system 

f’; = -&-NC’ 

8" = ;f,e 
C” = iL/fJ’. (24) 

For class 3, the similarity transformation chosen is 

aRa, 

which renders the following system 

f’; = -&-NC’ 

C” = : Ra,f,C’. 

(25) 

Using the pair of variables defined in equation (25), 
the equations for the dispersion-governed convection 
of class 4 become 

Table 2. Scales for dispersion in both heat and mass transfer 

Driving 
mechanism V NU Sh Criteria 

&SAT 5 -112 
0 

r”2 -’ Y 
z 00 H E D, << I 

Heat transfer Y 
INI << 1 KsSAT < -I/2 

0 
Y 

0 

-l,Z 

Y E H 
Ds >> 1 

K.ScAC Y ‘I2 r -’ Ds >> 1 
Mass transfer Y . 00 z z 

INI >> I fW&AC D, cc I 
Y 
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f’; = -0’-NC’ 

where D,s is the ratio between the thermal and the 
chemical dispersion coefficients, D, = t/y. 

Each of the mathematical problems posed by the 
sets of ordinary equations (23) (24) (26) and (27) can 
be solved numerically. The Runge-Kutta algorithm is 
known to be efficient in solving differential equations 
of this category. The procedure used to obtain the 
results presented in this paper is based on a fourth- 
order Runge-Kutta scheme. The initial value problem 
created by the boundary condition which is specified 
at the outer boundary can be handled by a shooting 
algorithm. Some difficulties may arise though. due to 
the coupling of the non-linear equations. At least two 
initial values must be guessed in the shooting process, 
in order to match the solution to the condition at 
the region far from the vertical boundary. Once the 
temperature and concentration are fixed at the bound- 
ary, the next closest estimate may be on the gradients 
of these variables. The solutions encountered by the 
numerical calculation depend on the values guessed 
for O’(0) and C’(O), i.e. 

U(m) = O[O’(O), C’(O)] (28) 

C( -/j) = C[O’(O), C’(O)]. (29) 

Also. as solutions to boundary layer problems. the 
profiles must be asymptotic at positions far enough 
into the medium. Such restriction can be monitored 
by the values 

O’(rj) = t9’[0’(0). C’(O)] 

C’(fX) = C’[U’(O), C’(O)] 

At stages where the final converged solution is not 
yet reached, the values given by equations (28)-(31) 
are non-zero and may be represented by residuals. The 
problem hereon becomes an optimization problem. 
where the objective is to minimize the residuals or 
the combination of them. The shooting procedure 
adopted in the present work follows the Nachtsheim- 
Swigert [I I] method, seeking the least square sum of 
the residuals. Although the method provides unique, 
asymptotic solutions, the numerical procedure may 
require relaxation in order to achieve convergence. 
As the problems in our study frequently lead to the 
solution of ill-conditioned matrices, a Marquardt [I21 
scheme was employed to provide proper numerical 
relaxation whenever needed. 

RESULTS 

For the numerical solution on flows of class 2, the 
values used as parameters for the numerical inte- 
gration of equation (24) were the same employed in 
the preceding problem, except for Aq which was set 
to 2.5 x 10e3. This problem refers to the class where 
hydrodynamic dispersion is totally absent. The results 
obtained reproduced exactly the values published 
earlier [5, 61 for the case of pure molecular diffusion. 
Runs on this problem served as validation tests for 
our numerical scheme. 

Results obtained from the numerical procedure Parameter Ra,. is expected to vary in the order of O- 
described in the preceding section are reported for 10 for occurrences of natural convection in saturated 

each class flow. An inter-case comparison is made for 
the most important characteristics as velocity, tem- 
perature and concentration profiles. Numerical values 
are reported in each case for the local transfer rates, in 
temrs of local Nusselt and Sherwood numbers. Runs 
were organized by classes of flow, in the same sequence 
presented in the previous sections. 

Regarding class I flows, the mathematical problem 
posed by equation (23) along with the boundary con- 
ditions was solved via integration in ‘1 from zero to 
values as high as 15. The increment A’1 used to perform 
the integration was 2.5 x IO-“: this increment was 
found to be small enough to render solutions insen- 
sitive to further decreases in At]. The results sum- 
marized in Table 3 were obtained using the shooting 
success criterion of 2.0 x IO -‘. In other words, the 
solution was considered satisfactory when the cal- 
culated values for the residuals in equations (28H31) 
were altogether smaller than 2.0 x lo-‘. Relaxation 
through Marquardt’s algorithm was necessary to 
reach converged solutions in this case. In accordance 
with the variable transformation for cases 1 and 2, the 
local Nusselt and Sherwood numbers are 

Nu = --O’(O)Ra: ’ 

S/I = - C’(O)Ra;. ‘. 

(32) 

(33) 

The velocity profiles presented in Fig. I (a) show the 
influence of mass dispersion on the hydrodynamic 
boundary layer. The trend is for the boundary layer 
to thicken as mass dispersion increases. The graph 
refers to the situation of balanced heat and mass buoy- 
ancy forces. Similar patterns are obtained for different 
values of N # 0 [l3]. For small values of Ra;., the 
velocity profiles tend to resemble the profiles obtained 
with IN] << I. Figure l(b) illustrates the temperature 
field near the boundary. The dispersion of constituents 
improves the heat transfer to the flat boundary, as the 
thermal boundary layer decreases with Ra;. for all 
cases with N # 0. As pointed out by the scale analysis 
this effect is more pronounced towards higher values 
of N. A reverse effect is observed on the species con- 
centration distribution. Figure l(c) shows that the 
constituent-rich layer thickens as the dispersion 
number increases. This influence on the transport of 
species is also seen when N is zero, a condition in 
which the effects of dispersion do not interfere with 
either the heat transfer or the fluid flow. 
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Table 3. Numerical values from the similarity solution to 
flows of class I 

N RU, Nu, Ra; ’ ’ S/I, Ra; ’ ’ 

0 0.1 0.444 I.596 
0.5 0.444 0.618 
0.8 0.444 0.456 
I 0.444 0.393 
2 0.444 0.241 
4 0.444 0.142 
6 0.444 0.102 
9 0.444 0.072 

100 0.444 0.0078 

0.1 I 

0.2 I 

0.5 I 

0.8 I 

I 0.1 
0.5 
0.8 
I 
2 
4 
6 
9 

0.464 0.385 

0.484 0.379 

0.544 0.367 

0.604 0.360 

0.536 I .362 
0.609 0.545 
0.632 0.410 
0.642 0.356 
0.671 0.229 
0.691 0.146 
0.698 0.112 
0.704 0.086 

2 0.1 0.632 1.289 
0.5 0.770 0.525 
0.8 0.807 0.399 

‘I 0.823 0.349 
2 0.860 0.23 I 
4 0.882 0.154 
6 0.889 0.121 
9 0.895 0.096 

3 0.1 0.730 1.255 
0.5 0.920 0.518 
0.8 0.964 0.396 
I 0.981 0.349 

2 I.019 0.235 
4 I.040 0.160 
6 1.048 0.128 
9 1.054 0.102 

4 0.1 0.828 1.235 
0.5 1.059 0.514 
0.8 I.104 0.396 
I I.121 0.350 
2 I.157 0.239 
4 I.178 0.164 
6 I.186 0.132 
9 I.192 0.106 

porous media of low to medium porosity, while Rat 
is two orders of magnitude greater for the same con- 
figuration. The last range comprises the values used 
for Rat in the calculations relative to flows in class 3. 
Recalling the similarity transformations applied to the 
governing equations in this case, the local Nusselt and 
Sherwood numbers are now given by 

(34) 

(35) 

(b) 

Cc) 0 .so 

FIG. I. Influence of chemical dispersion on (a) fluid velocity, 
(b) temperature profile and (c) species distribution, in class 

I flows. 
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Table 4 displays the results relative to the cir- 
cumstances where heat diffuses primarily by disper- 
sion. The heat transfer rate decreases with an increas- 
ing dispersion activity for this extreme case. This 
trend is consistent with the scaling law predicted for 
Nu. The velocity profile presented in Fig. 2 illustrates 
the effect of heat dispersion upon fluid motion close 
to the boundary. The same plot can be used to visu- 
alize the temperature profile, since when N = 0 the 
velocity and the temperature solutions coincide. The 
temperature gradient is diminished by the increased 

Table 4. Summary from the similarity solutions to flows of 
class 3 

0 1 
2 
4 

10 
100 
150 

0.1 I 

0.2 I 

0.5 1 
0.8 1 

1 I 
2 
4 

10 
100 
150 

2 1 
2 
4 

10 
100 
150 

3 I 
2 
4 

IO 
100 
150 

4 1 
2 
4 

10 
100 
150 

-1.1 1 
-1.2 1 

- 1.5 1 

-1.9 1 

-2.0 1 

-3.0 
: 

-4.0 I 
2 

0.377 
0.377 
0.377 
0.377 
0.377 
0.377 

0.378 

0.377 

0.372 

0.363 

0.356 
0.324 
0.291 
0.256 
0.210 
0.206 

0.424 
0.661 
1.014 
1.687 
5.558 
6.826 

0.440 

0.470 

0.545 

0.606 

0.642 
0.948 
1.381 

2.230 
7.168 
8.788 

0.326 0.794 
0.284 1.151 
0.244 1.655 
0.201 2.649 
0.149 8.453 
0.144 10.359 

0.302 0.917 
0.255 1.318 
0.213 1.855 
0.170 3.005 
0.117 9.559 
0.112 11.712 

0.282 
0.234 
0.191 
0.148 
0.097 
0.093 

1.508 

0.890 

0.529 

0.419 

0.405 

0.327 
0.254 

0.291 
0.224 

1.023 
1.465 
2.088 
3.321 

10.546 
12.919 

0.298 

0.314 

0.369 

0.442 

0.460 

0.616 
0.838 

0.747 
1.030 

f’ 3 
=a 

0 250 

FIG. 2. Effect of thermal dispersion on fluid velocity and 
mass transfer for heat-transfer-driven flows of class 3. 

fluid mixing from hydrodynamic dispersion near the 
boundary. The temperature distribution is more linear 
than the profiles observed in pure diffusion cases. The 
distribution of the chemical species however, presents 
a pattern very similar to those profiles. Figure 2 shows 
that an increase in the heat dispersion coefficient 
causes the concentration boundary layer to narrow 
toward the wall. The mass transfer then increases at 
the same proportion. Here the mass transfer behavior 
with a varying Ra, is similar to the purely diffusive case 
with changes on Le. This pattern could be anticipated, 
given the complete analogy between o! and <v in the 
two cases. 

Finally, regarding flows of class 4, the numerical 
integration of equation (27) was accomplished by 
using the smallest step size of all cases, At) = 5 x 10m5. 
Strong relaxation parameters were needed in order to 
achieve convergence, mainly at the beginning of the 
calculation process. The reason for the increased 
degree of difficulty is the presence of higher order 
derivatives in all three governing equations. Going 
from class 1 to class 4 the difficulties build up as 
the number of derivatives brought into the system 
of coupled equations increases. In every case, both 
variables and derivatives were maintained as zero at 
the higher values of 9. To reduce the computation 
time, the qmax. value was leveled at 5.0, still rendering 
solutions insensitive to further increases in that value. 
Table 5 summarizes the results obtained for different 
values of N and dispersion ratio D,. We consistently 
considered only cases with 5 > y (D, > l), in the range 
of practical interest. Taking into account the differ- 
ences in the definitions of the similarity variables, the 
parallelism between Le in class 1 and D, in class 4 
may be recalled at this point to typify the influences 
of D, on both heat and mass transfer. An’ increase in 
D, causes the heat transfer rate to decrease in heat- 
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Table 5. Results of similarity solutions for dispersion-domi- 
nated flows 

0 I 0.377 0.377 
2 0.377 0.611 
4 0.377 0.947 
8 0.377 1.420 

10 0.377 1.610 
100 0.377 5.477 

I I 0.377 0.377 
2 0.343 0.572 
4 0.309 0.851 
8 0.278 1.274 

10 0.270 1.401 
100 0.215 4.594 

2 I 0.377 0.377 
0.332 0.559 
0.286 0.819 
0.244 0.184 
0.232 1.331 
0.159 4.308 

2 
4 
8 

IO 
100 

3 I 
2 
4 
8 

10 
100 

0.377 
0.326 
0.274 
0.227 
0.213 
0.130 

0.377 
0.552 
0.802 
1.154 
1.295 
4.167 

4 1 0.377 0.377 
2 0.323 0.548 
4 0.267 0.792 
8 0.217 1.136 

10 0.202 1.274 
100 0.113 4.084 

transfer-driven flows. The mass transfer rate decreases 
in the same proportion in this case. 

CONCLUDING REMARKS 

Hydrodynamic dispersion in porous media affects 
both heat and mass transfer in natural convection 
flows. Departing from a general model to describe 
dispersivity in porous media, the present study 
addresses the dispersion effects in double-diffusive 
convection. Scale analysis is used to streamline the 
influences on the overall heat and mass fluxes along a 
straight vertical boundary. In the asymptotic limits, 
dispersion in boundary layer flows is described by 
simple form equations. Solutions of self-similarity are 
encountered for the governing equations. The numeri- 
cal results obtained can be further used to check the 
scaling laws furnished by scale analysis. Figure 3 illus- 
trates this verification for class 4 flows. According to 
Table 2 

- D; ‘12, for N << 1 (36) 

and 

-D,‘, for N>>l. (37) 

.I. , 

1 10 

D. 

FIG. 3. Scaling relation for dispersion-dominated flows. 

For N = 0 the slope in Fig. 3 is very close to -l/2, 
and as N increases the trend is to increase the curve 
slopes towards the unity exponent in the log-log plot. 
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